
Coherent response in the forward direction to the almost stepwise -pulse

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys.: Condens. Matter 8 5483

(http://iopscience.iop.org/0953-8984/8/29/021)

Download details:

IP Address: 171.66.16.206

The article was downloaded on 13/05/2010 at 18:21

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/8/29
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter8 (1996) 5483–5489. Printed in the UK

Coherent response in the forward direction to the almost
stepwiseγ-pulse

E A Popov

Zavoisky Physicotechnical Institute, Sibirskii Trakt 10/7, Kazan, RU-420029, Tatarstan, Russia

Received 12 October 1995, in final form 12 February 1996

Abstract. The coherent response in the forward direction to the almost stepwiseγ -pulse
(hereafter one supposes that the pure stepwiseγ -pulse is described by aθ(t) step function)
is theoretically analysed. In this way, first of all the analytical form of theγ -pulse has been
obtained when 90◦ remagnetization of the ‘magnetic shutter’ takes place. The problem is solved
by employing the semiclassical Maxwell–Bloch formalism. Then the time evolution of the
coherent response to thatγ -pulse is calculated when it propagates through a two-level resonant
medium. Finally the theoretical results are used to describe the experiment quantitatively.

1. Introduction

The propagation ofγ -pulses through a resonant medium has been investigated previously
[1, 2] where aγ -pulse was obtained either by the instantaneous mechanical modulation
of a natural source or by remagnetization of a perfect57FeBO3 crystal included in the
experimental set-up (the so-called ‘magnetic shutter’ (MS)). Recently the propagation of an
almost stepwiseγ -pulse in the forward direction has been experimentally researched using
a MS [3]. The experimental set-up contained two57FeBO3 crystals: the first acted as the
polarization of M̈ossbauer source radiation and the second was transparent to the incident
γ -quanta prior tot1. At t1 the resonant interaction of theγ -quanta with the shutter was
switched by the 90◦ remagnetization of this57FeBO3 crystal in the time interval1t 6 5 ns,
which is much less than the lifetime of the first excited nuclear state of57Fe (τN ' 141 ns),
and the quanta are effectively absorbed. Theγ -pulse obtained in this manner fell on the
nuclear target K2Mg57FeCN8 · 10H2O which has a single absorption line. All elements of
the set-up are in resonance with theγ transition(1/2)g → (1/2)e of the shutter. One needs
to note that the time in this case is defined byt1 unlike the general coincidence scheme
[4] where the timet0 is connected to the formation of the nuclear state of 14.4 keV energy
in a 57Co source. The experimental form of the coherent response observed att > t1 = 0
is the flash (tmax ' 20–25 ns) of approximate duration 100 ns which has an intensity
comparable with that of the incidentγ -pulse. This behaviour of the coherent response
is different from the results of nuclear forward-scattering experiments with synchrotron
radiation [5, 6] and needs a theoretical description, although it is necessary to note that a
qualitative consideration connected with the ‘nuclear exciton’ concept has been proposed in
[7].
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2. Theoretical formalism

For the first time let us obtain the form of theγ -pulse which appears after the propagation
of incident radiation through a MS during its 90◦ remagnetization. To solve this problem
the semiclassical Maxwell–Bloch formalism (MBF) describing the interaction of a radiation
pulse of low intensity with an optically dense medium is used [8]. The MBF gives results
like those obtained from the general theory of coherent Mössbauer scattering [9, 10] when
the nuclear transition currents are time independent and it is more convenient when nuclear
γ -transitions are influenced by time-dependent perturbations (for instance, both sample
remagnetization and doubleγ -NMR resonance). So the corresponding shortened Maxwell–
Bloch equation system is [11]
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where a and σ eg are the convolutions of theγ -quanta field and of the matrix elements
of density matrix of the nuclear system, respectively;jeg are the matrix elements of the
current operator ofγ -transitions;1 is the Doppler shift of incidentγ -quanta;ωeg are the
γ -transition frequencies when there is only hyperfine splitting of nuclear levels;0 is the
natural width of the M̈ossbauer line;ρ(0)

g = 1/2Ig + 1 is the equilibrium population of the
ground nuclear state. Here the general plane-wave approximation is used whena depends
on z only. Passing to the Fourier images
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∂ap

∂z
+ i

ν

c
ap = − 2πf ηn

hk(2Ig + 1)

∑
p′

∑
e,g

B∗
eg(p)Beg(p′)ap′

1 + ν − ωeg + i 0
2

(2)

whereap are the transverse components of the electromagnetic field;η is the abundance
of the Mössbauer isotope;n is the nuclei number in the unit volume,Beg(p) = (−jeg ·
ep/c) exp[ik · r].

It is known [12] that

Beg(p) = (2π)1/2
∞∑

L=1

L∑
M=−L

iL(2L + 1)1/2D
(L)
Mp(ϕ, θ)[ALM(m) + ipALM(e)] · jeg

for the circular polarization basis(ep = (ex + ipey)/21/2, p = ±1). Here ALM(m) is
the multipole of a magneticγ -transition andALM(e) is the multipole of an electricγ -
transition;D(L)

Mp(ϕ, θ) are rotating matrices of the wavevector of the incidentγ -quanta in
the eigencoordinate system. Let us consider now the magnetodipoleγ -transition(L = 1).
That is right for instance for theγ -transitionsIg = 1/2 → Ie = 3/2 of the 57Fe isotope.
If T1M = (−1/c)j ·A1M(m), then〈Ieme|T1M |Igmg〉 = C(Ig1IemgMme)〈Ie‖T1‖Ig〉 because
of the Wigner–Eckhart theorem, and also〈Ie‖T1‖Ig〉 = (0/8π(1 + α))1/2 [9], whereα is
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the conversion coefficient. Substitution of these expressions into (2) gives
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whereµ = 0f ηnσabs is the nuclear absorption coefficient.
Let a natural radioactive source be used as the incident radiation source:

ainc(t) =
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einc
p exp
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2

)
whereeinc

p is the polarization vector of incident radiation and0s the linewidth of the source
(0s ' 0). Then, selecting theγ -transition (1/2)g → (1/2)e (1 = ω1/21/2), we obtain
the equation system describing the propagation of incident radiation through a MS in the
two-level resonant approximation:
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ap(ν, z = 0) = 1/ν + i0s/2 p = ±1. (4)

When t < t1 the local hyperfine fieldHhf is directed along OZ for both elements of the
MS, andγ -quanta propagate along OY (θ = π/2, ϕ = π/2). Then equation (4) for the
circular polarization basis is

∂a1/∂z + i(ν/c)a1 = (−µ/8)(a1 − a−1)/ν + i0/2

∂a−1/∂z + i(ν/c)a−1 = (−µ/8)(a−1 − a1)/ν + i0/2. (4a)

For a linear polarization basis(aπ = (a1 + a−1)/21/2, aσ = −i(a1 − a−1)/21/2) it follows
from (4a) that

∂aπ/∂z + i(ν/c)aπ = 0

∂aσ /∂z + i(ν/c)aσ = (−µ/4)aσ /ν + i0/2. (4b)

It is seen from (4b) that both elements of the MS are transparent for theπ component of the
radiation field and they absorb itsσ component. The solution of (4b) for aπ(z, t), aσ (z, t)

can be found from (4b) by using the inverse Fourier transformation [4, 8]:

aπ ∼ exp[−0s(t − t0)/2] aσ ∼ J0((βi(t − t0))
1/2) exp[−0(t − t0)/2]

whereJk (k = 0, ±1, ±2 . . .) are the Bessel functions of the first kind,βi = µLi , Li are the
thicknesses of the polarizer(i = pl) and shutter(i = sh), respectively. IfµLpl � 1, then
theσ component of the radiation field is supposed to be absolutely absorbed by the polarizer
and onlyπ -polarizedγ -quanta fall on the shutter. Let 90◦ remagnetization of the shutter
take place att1. In this case the hyperfine interaction HamiltonianHhf = − ∑

j µjHhf Ijz

(µj is the nuclear dipole moment, andIjx , Ijy and Ijz are the projections of the nuclear
angular moment, wherej = e, g) is transformed toH′

hf = − ∑
j µjHhf Ijx in the time

interval 2–5 ns which is much less than the frequency of Larmor precession of nuclear spin
(hereafter we shall suppose that it happens instantaneously). It is known that the process
is non-adiabatic when the HamiltonianHhf has already changed but the wavefunctions9kj

(k; = me, mg) remain former. Now9kj
are not the eigenfunctions of the new Hamiltonian

H′
hf but they are the superpositions of its eigenfunctions8
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,

whered
(Ij )

kj j̀
(π/2) are the Wigner d-functions [12].
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Now the equation system describing the propagation of theγ -pulse through the shutter
after its remagnetization has the form

∂ap

∂z
+ i

ν

c
ap = −3µ

16

∑
p′=±1

∑
e,g

∑
e1,g1
e2,g2

d(Ie)
ee1

(
+π

2

)
C(Ig1Iemg1Mme1)D

∗(1)
Mp (ϕ, θ)d

(Ig)
gg1

(π

2

)
×d

(Ig)
gg2

(
+π

2

)
C(Ig1Iemg2Mme2)D

(1)
M ′p′(ϕ, θ)

d(Ie)
ee2

(π/2)ap′

1 + ν − ωeg + i 0
2

. (5)

For the two-level resonant approximation(1 = ω1/21/2), it follows from (5) that

∂aπ/∂z + i(ν/c)aπ = (−µ/4)aπ/ν + i0/2. (5a)

So, by comparing (4b) and (5a), it is seen that the shutter intensively absorbs theπ

component ofγ -radiation aftert1 if µLsh � 1. When t1 > t0 the continuous solution
of (5a) has the form

aπ1(Lsh, t, t0) = CJ0((βsh(t − t1)
1/2) exp[−0(t − t1)/2] θ(t − t1)θ(t1 − t0).

The constantC is defined by equating the solutions of (4b) and (5a) at t = t1 (C =
exp[−0s(t − t0)/2]). If t0 > t1 a γ -quantum does not ‘feel’ the shutter remagnetization and

aπ2(Lsh, t, t0) = J0((βsh(t − t0))
1/2) exp[−0(t − t0)/2]θ(t0 − t1).

So the general solution for theγ -pulse passing through the shutter is

aπ(Lsh, t, t0) = exp[−0s(t − t0)/2]θ(t1 − t)θ(t1 − t0) + aπ1(Lsh, t, t0) + aπ2(Lsh, t, t0). (6)

Equation (6) corresponds to theγ -pulse [3]. It can be found by averaging the intensity
Iπ (Lsh, t, t0) ∼ |aπ(Lsh, t, t0)|2 over t0 which is the random value for MS(〈. . .〉t0 =
0s

∫ t

−∞ dt0 (. . .)):
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HereNπ is the number of resonantγ -quanta passing through the polarizer per second.
Now let theγ -pulse (6) fall on a nuclear target. To describe the propagation of that

pulse it is convenient to use the response function formalism [13] in which the radiation
field after the target is defined as

aπt (Lt , t, t0) =
∫ ∞

−∞
dt ′ G(Lt , t − t ′)aπ(Lsh, t

′, t0) (7)

where

G(Lt , t − t ′) = δ(t − t ′) − (βt/402(t − t ′))1/2J1((βt (t − t ′))1/2) exp[−0(t − t ′)/2]

is the resonant response function (βt = µtLt ; µt andLt are the nuclear absorption coefficient
and thickness of the target, respectively).

Substitution of (6) in (7) gives the form of the coherent response after the target.

(1) At t < t1,

aπt (Lt , t, t0) = F0(Lt , t, t0)

F0(Lt , t, t0) =
∫ t
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dt ′ G(Lt , t − t ′) exp

(
−0s(t

′ − t0)

2

)
.
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Figure 1. The time dependencesP(t) at t > 0: curve 1, for theγ -pulse (6a); curve 2, for the
stepwiseγ -pulse; ——, intensity of the incidentγ -pulse att < 0; ∗, experiment [3].

Figure 2. The time dependencesIπt (Lt , t)/Nπ at t > 0, βt ' 11: curve 1,βsh ' 64; curve 2,
βsh ' 84; curve 3,β ' 124.

(2) At t > t1,

aπt (Lt , t, t0) = θ(t1 − t0){F1(Lt , t, t0) + F2(Lt , t, t0)} + θ(t0 − t1)F3(Lt , t, t0)

F1(Lt , t, t0) =
∫ t1
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dt ′ G(Lt , t − t ′) exp

(
−0s(t

′ − t0)

2

)
F2(Lt , t, t0) = exp
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.

The corresponding expressions for intensityIπt (Lt , t) can be obtained by averaging
|aπt (Lt , t, t0)|2 over timet0.

(1) At t < t1,

Iπt (Lt , t) = Nπ0s

∫ t

−∞
dt0 F 2

0 (Lt , t, t0). (7a)

(2) At t > t1,

Iπt (Lt , t) = Nπ0s

( ∫ t1

−∞
dt0 [F1(Lt , t, t0) + F2(Lt , t, t0)]

2 +
∫ t1

t0

dt ′ F 2
3 (Lt , t, t0)

)
. (7b)
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3. Numerical calculation and analysis

It is known that the intensity of resonantγ -quanta detected in the experiment is the
convolution of the coherent response of the target with the detector time functionfd :

¯Iπt (Lt , t) =
∫ ∞

−∞
dt ′ Iπt (Lt , t − t ′)fd(t

′). (8)

To fit (8) to the experiment [3] (β ' 840; βt ' 110; 0s ' 2.060; time resolution of
the detector, about 5.1 ns) the form offd was selected arbitrarily under the condition
FWHM = 5.1 ns. The good correlation of the calculated dependence with the experimental
data was when

fd =


0 t ′ < 0

a{(t ′/t2)
2} 0 6 t ′ 6 t2

1/((2(t ′ − t2)/1t)2 + 1) t ′ > t2

wheret2 ' 0.4 ns,1t ' 9.6 ns anda = 1/(t2/3+ π1t/4) is the normalization coefficient.
The time dependences ofP(t) = ¯Iπt (t)/Nπ are drawn in figure 1. One can see that

the detected signal fort > 0 is the flash with a maximum att ' 24 ns and duration
about 100 ns. Its maximal value is comparable (about 0.97) with the incident pulse. This
behaviour of the theoretical curve corresponds to the result [3] within the statistical error
of the experiment. The flash is due to the concrete form of the incident pulse (6a) and it
is mainly defined by the competition ofF1(Lt , t, t0) andF2(Lt , t, t0) (figure 1, curve 1). If
the incident pulse is the pure stepwise functionNσ0sθ(t1 − t), then the flash is absent and
the form of the re-emitted signal is defined byF1(Lt , t, t0) only (figure 1, curve 2). It is
necessary to note that this time evolution is unlike that for the 180◦ remagnetization case
[14] where the form of the resonant response is strongly influenced by the beats due to the
interference between the incident radiation and re-emitted radiation of the target.

4. Conclusion

We considered the propagation in a two-level resonant medium of theγ -pulse obtained
when 90◦ remagnetization of the MS takes place. The time evolution of theγ -radiation
field passing through the nuclear target is strongly connected with the coherent superposition
of the responses to the single components of the incidentγ -pulse. It follows from numerical
analysis of (7b) that the main contribution to the target signalIπt (Lt , t) at t > 0 is defined
by

Nπ0s

( ∫ ∞

0
dt0 [J0((βsht)

1/2) − A]2

)
exp[−0t ]

where

A =
(

βt

402

)1/2 ∫ t0

0
dt ′

J1((βt (t + t ′))1/2)

(t + t ′)1/2
.

As a result, sharp amplification of the coherent response takes place the maximum value of
which can exceed the intensity of the incident radiation (figure 2). This could be used for
the searching process ofγ -laser pumping for short-lived M̈ossbauer isotopes.
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